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Modular Properties of the Hard Hexagon Model
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The physical quantities (or powers thereof) in the hard-hexagon model that
were computed exactly by Baxter are shown to be modular functions with
respect to the number-theoretic group I",[N]. This allows us to determine the
analytic structure of x, the partition function per site in the thermodynamic
limit, and p, the density, as functions of the activity x.

KEY WORDS: Exactly solvable models; hard hexagon model, modular
functions.

1. INTRODUCTION

The hard hexagon model has been solved exactly by Baxter!" ¥ (see also
Baxter and Pearce'*®). For reviews of the hard hexagon model see
Baxter!”) and Pearce.'® Baxter gives explicit formulas for «, the partition
function per site in the thermodynamic limit, the density p, and the activity
# as functions of a point 7 in the upper half-plane . It is the purpose of
this paper to show that these physical quantities (or powers thereof) are
modular functions with respect to certain number-theoretic groups and
then to use the known mathematical theory of modular functions to deter-
mine the analytic properties of x(x) and p(x) in the complex activity plane.

For the disordered regime, we show that in the finite » plane, x(») and
p(x) have on the physical sheet branch points only at the critical activity «,
and at a nonphysical activity zyp <0 with |xyp| < #,.. The analytic con-
tinuation of x(x) and p(«) gives a 24-sheeted covering of the » plane. The
only possible branch points occur at »=0, %., #np, and oo, with =0
being a holomorphic point on the physical sheet. The explicit behavior of
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x(z) and p(x) on the physical sheet in the neighborhood of #, and zyp is
given below in (4.3), (4.8), (4.9), and (4.11). This structure on the physical
sheet appears to be the simplest structure possible consistent with the fact
that there is a phase transition and general theorems concerning cluster
expansions.® Furthermore, we remark that this analytic structure on the
physical sheet is precisely that predicted by Gaunt"® on the basis of a
Padé analysis of series expansions.

The key observation for this analysis is that the physical quantities (or
powers of these quantities in certain cases) are modular functions. The
groups that arise are I',[ N] for N=35, 15, 30, and 45, where

ron={u=(:

a b 1 =
ad—bc=1, <c d):_—t<0 1)modN} (1.1)

This is discussed in Section 2. The activity function #(t) is closely related to
the Klein icosahedron function {(z) and plays a distinguished role in our
analysis, as discussed in Section 3. In Section 4 the analytic structure of x
and p in the complex activity plane is discussed. Many aspects of this paper
are rather technical and have therefore been relegated to the Appendices. In
Appendix A some well-known properties of the Dedekind functions are
summarized for the convenience of the reader. Our main reference here is
Schoeneberg. ! Some elementary properties of the groups I';,[N] and
tables of local uniformizing variables are given in Appendix B. Also in
Appendix B one finds tables that give the local expansions of the physical
quantities at various cusps. Complete tables are given for the disordered
regime, and for the ordered regime enough information is given for an
analysis on the physical sheet. To prove Theorem 2.1, the generators of the
groups I',[N], N=35, 15, 30, and 45, are needed. Lists of generators are
given in Appendix C along with the method used to find these generators.
We could not find these results in the literature. Further information can
be extracted from these tables than what is given in Section 4.

Finally, we mention that it follows from our results and general
theorems from Riemann surface theory that in the disordered regime the
equation of state can be given implicitly by

Pk, p)=0 (1.2)

a, b, ¢, dintegers,

where P(x, y) is a polynomial in two variables. We show that the valence
of x is 22 and the valence of p is &, from which it follows that there exists a
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P of degree less than or equal to 8 in x and of degree less than or equal to
22 in p. The explicit determination of P is not done here. In the ordered
regime, there will exist, for example, polynomial relations of the form

P(x*, R*) =0, P(x3, p,)=0 (1.3)

(different P, of course), where R is the order parameter p, — p, and p, is the
sublattice density.!"™

2. HARD HEXAGON MODEL

If #={zeC|Im(z)>0} denotes the upper half-plane, then
Baxter" has shown that in the disordered regime

_ UZ(ST) ’7%1,0)(5775 5) ’7(10;(61'; 6) 712,0)(67; 6)

= 2.1

i) n*(61) ’7(32,0)(5'17§ 5) 1(1,0)(67; 6) (21)
_ 101,037 S)T

#e)= [U(z,O)(STQ 3) (22)
_ n(2x) n(37) , eyt

p(r)= “m [701.0/(575 5) 12.0y(307; 5) ] (2.3)

where the physical values of € # are Re t = 1/2, and in the ordered regime

1 (57) n.0/(57; 5) 11.0y(37; 3)

OZ0G0 T mheBns) 24
RiD)=p, - p, =101 (26)
D)= ps() = [ (56 ) man s 91 27)

and the physical values of 7€ # in the ordered regime are Re t =0.

We have written Baxter’s results in terms of the Dedekind eta function
n(t) and the generalized Dedekind function #,(t; N) (see Schoeneberg!"
and Appendix A), as this representation is convenient for the cusp analysis
below. The function #?*(t) is a cusp form of weight 12 for the modular
group, and the Dedekind functions #,(7; N), g # (0, 0) mod ¥, raised to
sufficiently high powers, are modular functions of level N. Our first result
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shows that the physical quantities (2.1)-(2.7) (or powers thereof) are
modular functions.

Theorem 2.1. 1In the disordered regime, »(t) is a modular function
with respect to the group /7, [51, and k(1) and p(z) are modular functions
with respect to the group I,[30]. In the ordered regime, #(t) is a modular
function with respect to the group I',[5], x*(t) and R*(z) are modular
functions with respect to the group I',[15], and p,(t) = ps(t) are modular
functions with respect to the group I7,[45].

Proof. First observe that if we let

T

at+b <a b

hd m, d) € SL(Z, Z)

then in the quantities (2.1)—(2.7) we encounter functions of the form f(nt).
In these we use the identity

at+b  alnt)+nb
et+d  (c/my(nt)+d

Thus, if 7] ¢,

a nb
(c/n d)e SL(2,7)

and this gives a new element in SL(2, Z). Now let f denote any of the
quantities (2.1}-(2.7) and N the corresponding integer in [;[N] in the
statement of the theorem. Using the above observation, the representation
of the various physical quantities in terms of #(7) and #n4(r; N), and the
transformation properties (A.3) and (A.4) (see Appendix A), we see that

at+b X
f(ct+d>=exp[mr(A)]f(f), r(4)eQ

for

a b
A:(c d>EF1[N]

The period r{A4) can be expressed (using the formulas in Appendix A} in
terms of various Dedekind sums. This expression is quite complicated-
looking, but it satisfies

r(AB)=r{(A)+ r(B) +even integer
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For any particular choice of 4el'\[N], r(4) can be evaluated by, say,
computer algebra means. In Appendix C, lists of generators for the groups
' \[N], N=5, 15, 30, 45, are given. The periods r(A4) are evaluated for each
generator, with the result that exp[nir(4)]=1 for every 4 for quantities
(2.1)-(2.3), (2.5), and (2.7) and exp[zir(4)] is a cube root of unity for
quantities (2.4) and (2.6). Finally, f is holomorphic for te # and is
meromorphic at the cusps. This follows from the corresponding properties
of n(t) and 54(t; N).

3. KLEIN’S ICOSAHEDRON FUNCTION AND
THE ACTIVITY FUNCTION

The Klein icosahedron function**'®

51;5
{(7) :17_99>_(_T_)
77(2,0)(51', 5)
— p2mit/s DI o § R o
B o (_1)n eSninzr+ mint . )

is a modular function on /'T5]. In fact, every modular function on I'[57 is
a rational function of {(t); in particular, the absolute modular invariant
function J(t) and {(t) are related by the icosahedron equation'*'3

J(t)= —u()/1728w()? (3.2)
where the polynomials u and w are

u(x)=x%41-228(x" — x°) + 494x1°

(3.3)
w(x)=x(x""+11x"—1)

The icosahedron function {(t) is an analytic bijection from the com-
pact Riemann surface #/I'T5] onto €=Cu {0}, and the modular
invariant J is an analytic bijection from s#/SL(2, Z) onto C.!'" Note that J
is holomorphic for 7€ 4 and J(ioo ) = co.

Thus, we see that the activity is

(1) = {—55(7) disordered regime (34)

{73(r)  ordered regime
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and the modular invariant J in terms of the activity » is

J= [z4+1+228(z3—z)+494zz]3 (3 5)
- 1728%(x> — 112 —1)° '

It follows from this last expression that J= o0 at x =0, o0, #., 2np, Where

11+5ﬁ:<\/§+1>5

2 2

11—5\/§=~<\/§«1)5

2

2, =

ANP =

It is also useful to discuss the activity function z(t) in terms of fun-
damental domains. If #{! denotes a fundamental domain for I',[5], then
a fundamental domain % for I'[5] can be chosen to be!!*!

C) Fy (3.7)

[this follows from the coset decomposition (B.3)], where (#{"), denotes
the image of #{’ under A€ SL(2, Z) and U= (} !). Now { is univalent on
F., but, of course, {* is not. Given zeC, there are five points 7e.%

(=% ucusps) such that (*(t)=z. Since
{(t+ 1) =wsl(r), ws = exp(2ni/5) (3.8)

these five points are related via t—>71+1 and are, in view of (3.7),
equivalent points for I",[5]; hence, {° is univalent on # .
Explicitly, #{" may be chosen to be'")

4 Ni—1
Fo=J ( f) (39)
1 0 A,f)

F=

where an inequivalent set of cusps is {ico, 0, 2/5, 1/2}, N, is the width of
cusp i, & is the standard fundamental domain for SL(2, 7Z), and

1 0 0 —1 2 -1 1 —1
A"(O 1)’ Az“(l 0)’ A3=(5 —2)’ A“:(z ~1)

(see Appendix B). To connect with the previous discussion of #(7), observe
that at these cusps (see Table IIT) z € {0, 00, #,, 4p }-
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4. xk=k(z) AND p=p(=)

For te#, J'(1)#0 except at =i, 1=p (=e*"*), and the points
SL(2, Z)-equivalent to i and p. Recalling that J(i)=1 and J(p)=0, we
have (picking a branch) that z(J) is holomorphic in the cut J plane with
branch points at 0, 1, co. Noting that ¥ and p are holomorphic in 7, it
follows from (3.5) that (again picking a branch) k = (%) and p = p(«) are
holomorphic in the cut » plane. The possible branch points are 0, o0, #,,
#wp, and those z for which J=1 and J=0. Thus, this quick analysis tells
us which points to focus on. We now present a more detailed analysis.

4.1. Disordered Regime

In the disordered phase, x(t) and p(t) are modular functions on
I';[30]. The group I',[30] is a subgroup of index 24 in I",[ 5] (sce Appen-
dix B); and so a fundamental domain for I",[30] can be made from 24 fun-
damental domains, appropriately patched together, of I';[5]. This means
that when we choose # as the independent variable, k = k(%) and p = p(x)
will be a 24-sheeted covering of the » plane. One of these sheets will be the
physical sheet.

We now show that the points arising from J=0, 1 are not branch
points. In the modular group, t =1, p are elliptic fixed points; but in the
congruence subgroups I'TN] these are not fixed points,"*? and the local
variables are simply (v —7) and (t — p), respectively. From this and the fact
that {(t) is univalent on % we conclude that at v’ [ =SL(2, Z)-equivalent
point of p or i] we have

r—z=at—1)+ -+, a#0

and so the series may be inverted to give 7=1t(x) holomorphic in some
neighborhood of +". Hence k=x(t(x)) and p=p(z(«)) are also
holomorphic. Thus, we have only to examine the points 0, 00, z,, #np-

Four inequivalent cusps of /",[5] can be chosen to be ico, 0, 2/5, 1/2
(see Appendix B). At cach cusp we introduce a local uniformizing variable
(Table I) and use the transformation properties of n(r) and n,(t; N) to
write a local expansion for «. These local expansions are given in Table III.
To analyze k = k(<) and p = p(x) we first find a set of I,[30] inequivalent
cusps and group them into subsets of I",[5]-equivalent cusps. This is done
in Table I, Appendix B. There are 32 inequivalent cusps and hence 32
local expressions for k = x(t}) and for p = p(r) (see Table IV and V). Most
of these represent « and p on unphysical sheets.

To determine the behavior in %, we now eliminate the local uniformiz-
ing variable x (Appendix B defines “x”!). To determine x on the physical
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sheet, we must restrict 7 to lie in the fundamental domain &V as defined
by (3.9) and not one of its images used to construct the fundamental
domain #.}) of I'|[30]. This is the case since an elimination of the local
variable x in the expansion at ico of x =k(7) and == «(t) gives the con-
vergent physical small-activity expansion of k =k(x). If one of the 7",[5]-
equivalent but I',[30]-inequivalent cusps to ico is chosen, then the small-
activity expansion of x on an unphysical sheet results. At x=0 on the
unphysical sheets, «(xz) has sixth-root, cube-root, and square-root
singularities and one additional holomorphic point.

The behavior of k = k(#) near » = =, on the physical sheet has already
been discussed by Baxter.""> Defining

t=11—z/z,| (4.1)
one inverts the local expansion x = #(1) at 1/2 in Tabie III to obtain
|x| =12 F(t), x=Ilocal I';[30]-variable at 1/2, x<x, (4.2)

where F(t) is a convergent power series in ¢, F(0) # 0. Note (i) take x — x>
in Table I1I to get a local /7,307 variable (see discussion in Appendix B)
and (ii) x <0 for ¢ real. From Table IV it follows that the local expansion
of k =xk(t) at the cusp 1/2 will be in powers of the variables x* and x°.
Thus, in terms of ¢, ¥ will have the convergent Puiseux expansion

K(z)= Z K tr11+(5/3)nz’ %=z (4.3)

Ry, ny ¢
n,mz0

Explicitly, the first few terms are

£ 1(1 ! >z+ 3
1 8/3 1 7 3 10/3
125(2+f> 25(25ﬁ oy @4

where

3./3 sin*(2%/5) 27
“TTI0 Sini(n)5) [250 25“1\[} (43)

On the unphysical sheets the behavior of k() near x, can be quite dif-
ferent, as can be seen from Table IV. For example, at the cusp 1/12, k()
has a pole of order 5, the leading term in the Laurent expansion being

given by ,
_sin*(2n/5) / « =5
O~ sy () o
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On other sheets there are square-root and sixth-root branch points at
z=z%,. We know of no statistical mechanical interpretation of these
singularities on the unphysical sheets.

The other singularity of x(«) in the finite » plane occurs ar =z = znp. A
similar analysis as above shows that if s= |1 — z/zp|, then

x=sYF(s),  x=local I';[30] variable at cusp 0 4.7)

where F(s) is a convergent power series in s, F(0) # 0 [not the same F as in
(4.2)]. From Table IV we conclude that at the unphysical singularity xnp
on the physical sheet

le)= 3 kDO el (4.8)
ay,m=0

The coefficients x{"F) can be computed explicitly from the tables if so
desired. It is this singularity that determines the radius of convergence of
the physical small-« cluster expansion. On the other sheets the behavior at
#np Can be either a square-root branch point, cube-root branch point, or a
pole.

The cusp 2/5 corresponds to » = co on the physical sheet. Here x has a
sixth-root branch point with a square-root and cube-root branch points on
unphysical sheets. On two unphysical sheets x has a pole (look at cusps
7/30 and 13/30).

In Table V the local expansions for the density in the disordered
regime are given. Proceeding as above, we see that, at » = #,, p(x) has on
the physical sheet a convergent expansion of the form

PUV= L P 10O (49)

ny,ny,n3z0

Explicitly,

1 1 1 1
S5(p,—p) =2 1P m ot — [ 1 —n | 3
NETRTIES: NG +15< +5\/§>t

17/3+0(t8/3), &=z

___1_(_1_..;,_1_) 12+___1___
10\25 \/5 125\/3 <

(4.10)

where p(,:(S-\/g)/IO. At z=ux,p¢ p has on the physical sheet the
convergent expansion

— —1/3 1/3 2 5/3)(2 1
L e D I A (4.11)



486 Tracy, Grove, and Newman

The valence of a moduiar function is the number of 7 in a fundamental
domain (including the cusps) that solve f(z)=c for a fixed ce Cu {w0}.
Since the valence is independent of ¢, we can choose a convenient value,
say ¢=o0. From (2.1) we see that x(7) is holomorphic for t€ s and is
only oo at the cusps. From Table IV we see that oo is assumed (counting
multiplicity) 22 times. Similarly, the valence of p(z) is 8.

4.2. Ordered Regime

As in the disordered regime, the only possible branch points occur
at 0, ., =xwp, and oo, Noting that [/ \[5]:7,{15]1=8 and
[I,[5]:7,[45]11=72 (see Appendix B), it follows that x*(x) and R*(x)
continue analytically to an eight-sheeted covering of the » plane and p,(#)
to a 72-sheeted covering. In the tables of Appendix B, we present a cusp
analysis sufficient only to describe the behavior on the physical sheet.

Tn the ordered regime, it is in the neighborhood of the cusp at 0 that
gives the behavior on the physical sheet of quantities (2.4)-(2.7) near z,.
Introducing ¢ as before {see (4.1)], one inverts local expansions to find

()= X TP 120 (4.12)

nynyz0

Explicitly, the first few terms are

1 1

K 3
Z:Hf(lﬁf»irzs\/[m 7 6-Vor

39 29
— 8/3 3 10/3
125 4/5—1)¢ (250 5% 5>z +0(1%)  (4.13)

with z - 2.
Similarly,

R(;{)z ll/9 z R llzl+(5/3)n2
ninz

nL,m =0

and

(2) gm+ (1/9)n

pax)=p. Y. P,
ny,m =0
for + - 0 on the physical sheet. The cusp 2/5 gives the « near zero proper-
ties for the physical sheet. From Table VIII we see that x has a cube-root
singularity.
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APPENDIX A. DEDEKIND FUNCTIONS
For 7€ # the Dedekind eta function #(z) is defined by"V

n(r):em‘r/lz n (1 _eZT[iVVIT) (Al)
m=1

For g=(g, h)eZyx Z 5 we have the generalized Dedekind functions*’

ng(r; N)= a(g)enth(g/N)r 1’1 (1— wl;ve(2ni/N)1m)
m=>0
m = g(mod N)
X n (1— gt e2mNy (A2)

m=>0
m= —g(mod N)

with

O((g)z{(l—a),;h)e"”"("“‘” ifg=0and # # Omod N

otherwise
w y = exp(2ni/N)

Pi(x)=x—-[x]-1/2
Po(x) = (x— [x])* = (x— [x]) + 1/6

For A= (¢ })e SL(2, Z), n(t) and n,(t; N) transform as follows:

at+b hidl ct+d 1/2
n (cHd):exp (—13 ¢(A)>( l. ) n(z) (A.3)
and for g £ (0,0) (mod N),
+b
e (Z-l—d; N> =explmy(4)] ng(t; N) (A4)

where g'=(g', h') = (g, h) 4,

- d— 12 sgn(c) S(d, [c]) for ¢#0
$(4)= (A.5)

b
d
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fa, g\, 4, (g
i) [-c— P, (—) + - P, (N) —2sgn(c) S(a, c)} for ¢#0
nil—)P2<£> if ¢=0
n
(A.6)
and S(a, c¢) is the Dedekind sum

seo= 2 (ENE) A7)

and S7,(a, ¢) is the generalized Dedekind sum

N _ g+vN g+ avN
S (o) (= B

where ((x))=x—[x]—3+4$d(x) with §(x)=1 if xe Z and 0 otherwise.
In particular, for 4e I'TN] and g # (0, 0) (mod N),

(AT, N) = exp[ny,(A)] ny(t; N) (A9)

Since 7m,(4)eQ, there exists an integer N, such that (n,(z; N))™ is a
modular function of level N, g # (0,0). According to Schoeneberg,'! the
choice N, =12N/(6, N) works. The periods n,(4) satisfy"'"

ng(AB)=my(A) +m,, (B) (A.10)
so that if A€ '[N, we have
Ty(AB) =my(A) + ny(B) (A.11)

APPENDIX B. CONGRUENCE SUBGROUPS AND
LOCAL EXPANSIONS

We define the standard congruence subgroups

F[N]z{AeSLQ, 7). A= i((l) ?) mod N} (B.1)
r[N]= {A eSL2,Z): A= + ((1) ’;) mod N} (B.2)

and take I'=TIT1].
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If U=(}!), then we have the coset decomposition
I\[N)=IINJUUIN]u --- UY'TIN] (B.3)
Thus, [I,[N]: ITN]]=N. Using"?
- 1
[IIN1T=5 N [T{1-=
2w P
we conclude that
- 1
(1M N1T==N[][{1~=
2w 14
In particular, [/ I',\[51]=12 and [/ ['([30]] =288, so that
{rs):r,f30jj=24 (B.4)
We write a cusp x/ye@ as (). The it is known""'> that a set of
inequivalent cusps of I'IN] is £(5), (x,y)=1, x, yeZy with —(3)
identified with (). In terms of these cusps the cusps of I';,[N] can be
identified with the orbits { +(***): be Zy}. In particular, I [5] has four
inequivalent cusps, which can be chosen as {ico, 0, 2/5, 1/2}, and I',[30]

has 32 inequivalent cusps (see Table IT).
In the neighborhood of a cusp A/k, (h, k)= 1, we write

1= hlk +it/k, Ret>0 (B.5)
Then if 4’ solves the congruence

hh' = —1(mod k) (B.6)

Table I. Cusp Data for I',[5], w,=exp(2ni/N)

Cusp Cusp width Local uniformizing variable
h ni(h i 2%
z Ks X =exp l:—’; (E+E>j,’ e(t)=exP<——[‘>
[0 1 e
0 5 e(5¢)
2s | w?e(5¢)
12 5 —e(10¢)
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Table ll. Cusp Data for ',[30], w, =exp(2ni/N)

Cusp Cusp width Local uniformizing
Kag variable x, e(t) = exp(—2n/t)
ico 1 e(t)
11/30 1 wide(301)
4/5 6 wse(30¢)
1/5 6 wie(30r)
1/10 3 w3ye(301)
9/10 3 w],e(301)
1/15 2 w]se(301)
4115 2 wle(301)
2/5 6 wle(301)
3/5 6 wle(301)
3/10 3 10e(301)
7/10 3 @%ye(301)
215 2 w!le(301)
7/15 2 w1s5e(301)
7/30 t wile(301)
13/30 t wBe(301)
0 30 e(301)
111 30 w?*,e(3301)
1/4 15 ,e(601)
1/14 15 w'3e(2101)
1/9 10 w3e(907)
2/9 10 w$e(901)
1/6 5 wee(30t)
5/6 5 wie(30r)
12 15 —e(301)
1/8 15 wge(1201)
1/7 30 w3e(210¢)
1/13 30 w3,e(3901)
13 10 w2e(301)
23 10 w,e(301)
1/12 5 w,e(601)
5/12 5 @e(601)
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the matrix
e e
is in SL(2, Z) and
At' =1 (B.8)
with
' =h'lk+ ikt (B.9)

The width of the cusp A/k of I',[ N] is defined to be the smallest integer x
such that AU*4~'e I';[ N]. A local uniformizing variable x of the cusp 4/k
is

x = e (B.10)

Observe that since A’ is determined only mod &, x is determined up to a xth
root of unity. This ambiguity is just a local change of coordinates and we
will use this freedom to choose a local variable x that gives the “nicest”
results.

In Table T a set of inequivalent cusps, cusp widths, and local unifor-
mizing variables for I",[5] are given. In Table II the same data are given
for I';[30]. In TableIIT the local expansions of {°(t) at each of the
inequivalent cusps of Table I are presented. Note that the “x” is the local
variable as defined in Table I . In Table IV the local expansions of x(z),
disordered regime, at each of the inequivalent cusps of Table IT are presen-

ted. Again, note that the “x” is the local variable appearing in Table II.

Table lll. Local Expansion of Z5(1) at
Inequivalent Cusps of I,[6]“

Cusp Local expansion of {3(t)
ico x([5, 11/[5,21)°

0 B o)1 w3])
2/5 —x7N[5,2)/[5, 11)°
1/2 =L wil/[1 ws])

= (5= 1)/2, (= (/5 +1)/2, w5 =exp(2nif5).

822/48/3-4-9
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Table IV. Local Expansions of k{r), Disordered Regime,
at Inequivalent Cusps of I';[30] As Given in Table Hi“

Cusp Local expansion

0 £[STTS, 1°16,3106, 21/[5, 2°[6, 11[61°

Tﬁ +12i/3x8 [3072[30, 61°[1; —11[1; @, 1/[30, 121°[L; wg 1[ 112

;ﬁg +3i/3x3 [151%[15, 31%(2, 11[2; »,1/{ 15, 61%[2, 1; @5 ][2]?

s £4x? [1017[10,2°[3; ~11[3, 1J/[10,41°3, L ~ 11[3]?

e £12(/3) BOPL30, 12T —11[8 0,1/030, 67[1; 06 1[17°

o £30/3) [ISTLI5, 6202 1102 0, V{15, 3702, 1 ;)20

s 4 [10J°[10,417[3; 1103, 1Y/[10,2F°[3, L; ~11[3]°

10 7 [S1°[5, 216, 316, 2)/L5, 11°[6. 11[61°

i £(6/3/5) 1 [6116; 05 1°L5; = 11055 05 1/16; w31 °[5: 0 1(5)?

Ve £(3/310)¢, 3103 05010, 51010; 0,1/T3; 02P[10, 50,1107
2o £(2ie,/5) 2102 057015, —1I[1S, V(2 01115, 55 ~1 {15 ]2
e £(i10)e,x™* [12L1; 05 17(30, 15130, 10}/ L: w21°[30, 5][30)°
Ve £(3/3/10)¢; 3P[3 03110, S1[10; 0, 1/[3; 0 L1, 5; 310107
i +(6/3/5)c2 [61°16; 031[5: 1105 0:31/16; 0s1°[5: 06151

s £ (2iey/3) (21702 W31[15; ~11[15.5 /(2 ws LIS, 5 ~1[15 ]
o2 £(i10)c,x % [112[1; w3 1[30, 151[30, 10]/[1; 5 T[30, 5][303°

5/12

2 The lower sign refers to the second cusp. The local variable “x” is defined by Table I, ¢, =
sin*(z/5)/sin3(2n/5), ¢, =sin®(2n/5)/sin’(n/5), wy=exp(2ni/N).
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In general, if x’ is the local variable for A/k +it/k in I',[5] and x” is
the local variable about the same cusp but now viewed in /',[30], then,
using (B.9) and (B.10), we have

x' = (x")<0 (B.11)
where

K30 =KsK3g (B.12)

Thus, in words, if one has the local expansion of a ['\[5]-invariant
function at h/k +it/k, the corresponding local expansion in [I;[30] is
obtained by replacing x’ in the 7°;[5] expansion by (x”)*®. Finally, we
have, of course, that the local expansion of a I'|[5]-invariant function at
equivalent cusps is just the same expansion with the interpretation that the

[{3R L}

x” is the corresponding local variable.

Table V. Local Expansions of p(T). Disordered Regime,
at the Inequivalent Cusps of I,[30] as Given in Table 1l¢

Cusp Local expansion
55,205 —x {63)/{2, 1}[5, 11130, 12]
%26?/153/30 {6,3}/{2,1}[30,6](5, 2]

i;i‘; Zji‘; {2,1}/{6,3}[10, 2][15, 3]

(1)’/112/,1;/12 ~pox " {30,15}/{10, 5}[6; ws1[1; 03]
iﬁz‘/é‘ p. {10, 5}/{30, 15}[3; 031[2; 2]

33 534 oo {10, 51/(30, 15)[3; w5 1[2; ws ]
o5l pox~! (30, 15}/{10,5)6; 03[ 1 5]
gﬁgj ;ﬁg x {2, 1}/{6,3}[10,4][15, 6]

« The local variable “x™ is defined by Table IT, p, = (5 —+/5)/10, pxp = (5 ++/5)/10, and po=
[4 sin(n/5) sin(2n/5)] "
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Table V1. Local Variables for a Partial Set of Inequivalent Cusps of I',[15]¢

Cusp Cusp width Local Uniformizing variable x,
Kys e(t) =exp(—2xn/t)
i 1 e(r)
0 15 e(151)
2/5 3 wte(151)
1/2 15 e(301)

“The cusps chosen are those needed for an analysis on the physical sheet.

To simplify the tables, we use the following notation in Tables I1I-V
and VIII-X:

(=TT (1—xm)

m=1

Goky =TT (1—x%)

[ik]l= ﬁ (l—xjm‘k)(l_xjm+k—j)
[j;a]: H (l—axjm)(l_.a-lxjrn)

[ja k; a] = H (1 —axjm‘k)(l _aAIxjerk—j)

m=1

Table VIl. Local Variables for a Partial Set of inequivalent Cusps of I',[45]¢

Cusp Cusp width Local uniformizing variable x,
Kas e(r) =exp(—2n/t)
ico 1 e(t)
0 45 e(451)
2/5 9 wie(451)
1/2 45 —e(907)

“The cusps chosen are those needed for an analysis on the physical sheet.
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Table VIII. Local Expansions of k(T1), Ordered Regime,
at the Cusps Given in Table VI

Cusp Local expansion
ico x~VA[573[5, 2133, 11/[31%(5. 173
0 (3./3/10)¢; [31°[3; wi1’[S; @31/ [3; ws (ST
2/5 (34/3)eex? [1517[15, 31°[ 1; 031/ 15, 61°[ 117
172 (3/3/10) ¢ e~ [317[3; 05 1%[5: 0, 1/[3, 03 1°[5]?

T3]

“The local variable “x” is given in Table VI, ¢, =sin*(n/5)/sin’*(2n/5), c,=
sin?(27/5)/sin3(n/5), and w = exp(2ni/N).

Table IX. Local Expansion of R=p,—~p,. Ordered Regime,
at the Cusps Given in Table V|“

Cusp Local expansion
ico (1513 7°
0 (3//5)x" [1SI3Y/[5T?
2/5 wysx® [3][15]/[1]
12 e~ X1 [31[151/[5T?

¢ The local variable “x™ is given in Table VL.

Table X. Local Expansions of p,(T) =p;(7). Ordered Regime,
at the Cusps Given in Table VIi|¢

Cusp Local expansion
ioo x? [1I093/[31%[5, 21145, 18]
0 p [451051/[151209; 03[ 1; wi]
2/5 [451011/031°[45, 9115, 1]
1/2 prp [451051/T15TP[9; w5115 @s]

¢ The local variable “x™ is given in Table VIII, p_.= (5 —\/5)/10, Onp =
(5+/S)10.
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APPENDIX C. GENERATORS FOR CONGRUENCE
SUBGROUPS

The group I'=SL(2, Z) is generated by the two matrices

(1 o) #e( o)

(these are the negatives of the matrices so named in Ref. 11). Let 7 be a set
of elements of I" consisting of one element from each (right) coset of I';[ N]
(that is, a right transversal for I';,[N] in I'). For each matrix M in I
denote by M the element of 7 in the coset I';,[N]M. A generating set for
T IN1is {VT(VT)™!, VR(VR)™": Ve T } (see Robinson,"'® Section 6.1).
This set contains at most 2[ [ I';,[ N]] elements and, if 7 is a Schreier
transversal, at most 1+ [/ I',[N]] nonidentity elements. We used a
simple-minded algorithm for constructing a generating set % for I';[N].
The algorithm builds ¢ and a Schreier transversal J concurrently. Initially
% contains just (~§ _9) and 7 contains just (J ). The algorithm consists of
[ I',[ N]] steps, each of which processes an element of 7 as follows:

. Take an unprocessed element V" of 7.
2. Put X="VT.
3. If I'\[N]X has no representative in 7, then add X to 4 and go
to step 5; else put Y= X(X) .
4. 1Y, Y !, —Y, or —Y ! belongs to %, then go to step 5; else add
Yto 4.
5. Put X=VR

6. If I';[N]X has no representative in 7, then add X to Z and go
to step 8; else put Y= X(X)

7. Y, Y!, —Y, or —Y ! belong to %, then go to step 8; else add
Y to 4.

8. Go to the next step or stop after [ 1 I',[N]1] steps.

The algorithm was implemented in the system CAYLEY (see
Cannon™”) and run on VAXs at the University of Arizona.

The results are as follows:

I',[5] is generated by four elements

(o) o o) (570 (55 5)
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I',[15] is generated by 18 elements
-1 0 1 1 16 5 <—29 ~12> (—44 —27)
( 0 —1> (O 1> —45 —14 75 31 75 46
/ 31 20 —14 -3 76 21) (—59 —9> < 31 17>
\—45 -29 75 16 —105 —29 105 16 —135 74
61 16 —-59 -7 —59 —48 61 47
—-225 —59 135 16 75 61 —135 —104
—149 —81 —14 —1 31 4 121 64>
195 106 15 1 —225 =29 —225 —119
I',[30] is generated by 55 elements
> 1 < 61 24 < 121 34 91 54
0 —1 0 —150 —-59 —210 —59 —150 -89
—59 —33 <—89 —56 241 55
—150 —29 270 151 240 151 —390 —89
64 —89 —23 31 5 61 22
210 —89 120 —180 —29 —~330 —119
~32> -89 27 ( 31 10 < 151 32
121 300 91 —-90 —29 —420 —89
< 209 —147 —149 —-22 301 115
240 »29 300 211 210 31 -390 —149

(o
(e
(-2
(- 333 ) (oo ) (o ) (o0 -9)
(1o
.
(—ou
(-

<o

.lk

22 —179 —52 241 141 —389 —151
~120 29 210 6l —870 —509 930 361
389 —114 211 172 121 96 —-59 27
720 211 —330 —269 —150 —119 330 151
8 —149 —123 361 212 301 208
330 —29 510 421 —1020 —599 —780 —539

391 214 121 13 —299 —82 —269 —48
930 —509 —270 —29 660 131 510 91



I',[45] is generated by 151 elements
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331 212 271 147 —59 -8 —149 -80
—420 —269 —330 —-179 450 61 840 451
121 67 211 49 —269 —35 391 169
—540 —299 —-900 —209 930 121 —900 —389
241 128 —659 —363 —119 =27 421 122
—450 —239 1200 661 930 211 —1860 —539
—929 —331 1861 661
1350 481 —-2700 —959

1 181 49 91 20 —-179 —48
O —l 1 —495 —134 —405 —89 675 181
—134 =77 271 98 226 125 91 66
315 181 —495 —179 —405 —224 —495 —359
76 —134 —93 136 111 —89 —13
855 —359 585 406 —495 —404 315 46
—224 —121 91 36 136 81 361 229
585 316 —225 -89 —225 —134 —495 —314
4 =79 46 9 (—179 —138 136 19
7 451 —225 —44 585 451 —315 —44
80 —269 —166 —~314 =73 631 164
405 —-179 585 361 585 136 —1035 —269
586 111 316 143 —494 175 —629 —398
—945 —179 —495 —224 765 271 855 541
316 245 —674 —391 766 291) —179 —78
—405 —314 855 496 —945 —359 1035 451
—89 —-73 181 53 361 221 451 125
495 406 —765 —224 —1395 —854 —-1620 —449
227 181 125 —-359 —94 451 317
—1215 —764 —585 —404 1035 271 —1215 —854
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—494 —307 991 406 1171 676 541 413
1305 811 — 1755 —719 —2025 —1169 —~765 —584
—269 —193 —89 —12 361 64 —179 —95
315 226 675 91 —2025 —359 765 406

451 265 —719 —453 —~269 —32 —629 —81
—1530 —89%9 2430 1531 765 91 1755 226
—404 —65 —899 —633 766 289 —944 275

1125 181 2430 1711 —~2025 —764 2475 721

361 34 631 245 —~314 —259 631 445
—945 —89 —1530 —1079

—1620 —629 765 631

1845 1036 1935 586

—764 —429 —809 —245 —809 —474
1845 1081

1171 845
—1620 —1169

( —854 —479 g11 105 —89 —e6l
1125 631 —1035 —134 855 586
—179 —69 271 174 —449 —254
405 *—44 1170 451 —1260 —809 2070 1171
1306 547 271 71 721 256 1711 992
—4725 —1979 —855 —224 —2025 —719 —4500 —2609
( 1621 474 721 554 1216 367 —1169 —-739
3690 —1079 —1170 —899 —1935 —584 1710 1081
989 — 557 1396 961 991 287 —1394 —487
144 811 —2025 —13%4 —1395 —404 1935 676
721 113 271 154 —44 —17 361 211
—855 —134 —315 —179 585 226 —2385 —1394
49 ( 271 17 —224 195 1621 339
2025 —314 —1710 —1079 1035 901 —5805 —1214
586 169> ( 1216 745 —494 -85 631 531
—2025 —584 —4185 —2564 1575 271 ~1710 —1439
< 1529 ——967) <—1889 —409) ( 991 521) ( 2746 1987)

3915 2476 3330 721 —1710 —899

—1754 —1231 3961 1531 4141 1711
3015 2116

—4725 —3419

—6750 —2609 —6750 —2789
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—4814 —1865 —1439 311 —2969 —1096
7785 3016 2295 496 4635 1711

946 335 —1349 —785 631 441 4141 14385

—1395 —4%4 1935 1126 —900 —629 —5895 2114
—1754 —1085 1846 647 2791 585
2475 1531 —2565 —899 —3645 —764

3241 1999\ /—944 —605\ [—89 —62\ [—224 —47
— 4230 —2609) (1125 721) <1035 721> <1935 406>
271 1441 596\ [—2474 —1517
5085 —1799) <»5220 —2159) < 8955 5491)
629 —428\ [—2564 —947 1621 1150 1936 331
225 1531) ( 8775 3241) (—4185 -2969) (—4995 —854)
9 —505\ [—3959 —2497\ [—5759 —3527
3465 1216) < 7065 4456) <10215 6256)

3241 1254 4186 1737 5041 2929
—5580 —2159 —7155 —2969 —8595 —49%4
4006 1215 1576 1133 —4949 —1502
—6525 —1979 —2565 —1844 8010 2431

2161 657 —1709 —958 2791 815 361 188
—3105 —944 8190 4591 —8010 —2339 —1035 —539

145)( 3916 2297) ( 12511 2700)

2385 —404 —10125 —5939 —20430 —4409
—1349 —477 856 529 2206 379 —1214 —429
1530 541 —945 —584 —4185 —719 2295 811
—1799 —1112 7111 1485 —3419 —583
10485 6481 —24345 —5084 15840 2701
5536 1681 7561 3136 3106 529
— 18225 —5534 —18225 —7559 —18225 —3104

10576 2209
—50625 —10574
These generating sets are, perhaps surprisingly, minimal or close to

minimal. A lower bound for the number of generators for I'|/[N] is
2 +integer part of [I:I,[N]]/6 (this can be deduced from Theorem
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VIIL7 of Newman'®)). So we have minimal generating sets for I",[5] and
I',[15]. Using programs for calculating presentations of subgroups of finite
index in finitely presented groups and for transforming finite presentation
(see Havas et al.'”’), it is possible to find relations among the generators in
the generating sets for 7,[30] and I',[45]. These relations can be used to
get minimal generating sets.

Since I",[15] is a subgroup of index 8 in I',[5], another approach is
to start from a generating set for I',[5] and proceed similarly. The
resulting generating set is less pleasing, since larger entries arise in the
matrices.

NOTE ADDED IN PROOF

After this paper was submitted, the algorithm in Appendix C was
implemented using PASCAL. Copies are available by writing to L. Grove.

The polynomial (1.2) has been computed in “Equation of State and
Isothermal Compressibility for the Hard Hexagon Model in the Disordered
Regime” by M. P. Richey and C. A. Tracy, submitted to J. Phys. A: Math.
Gen.

The exponent 5/6 appearing in Eq. (4.8) has also been computed by
A. Baram and M. Luban, “Universality of the Cluster Integrals of
Repulsive Systems,” to appear in Physical Review A.
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