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The physical quantities (or powers thereof) in the hard-hexagon model that 
were computed exactly by Baxter are shown to be modular functions with 
respect to the number-theoretic group F~[N]. This allows us to determine the 
analytic structure of x, the partition function per site in the thermodynamic 
limit, and p, the density, as functions of the activity ~. 
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1. I N T R O D U C T I O N  

The hard hexagon model has been solved exactly by Baxter/~ 3~ (see also 
Baxter and Pearce(4-6)). For reviews of the hard hexagon model see 
Baxter 17~ and Pearce. Is) Baxter gives explicit formulas for to, the partition 
function per site in the thermodynamic limit, the density p, and the activity 

as functions of a point r in the upper half-plane J4~. It is the purpose of 
this paper to show that these physical quantities (or powers thereof) are 
modular functions with respect to certain number-theoretic groups and 
then to use the known mathematical theory of modular functions to deter- 
mine the analytic properties of to(z) and p(z) in the complex activity plane. 

For the disordered regime, we show that in the finite ~ plane, ~c(z) and 
p(~) have on the physical sheet branch points only at the critical activity ~,. 
and at a nonphysical activity ZNe < 0  with ]~NPI < ~,.. The analytic con- 
tinuation of ~c(~) and p(~) gives a 24-sheeted covering of the x plane. The 
only possible branch points occur at ~ =0,  z,., zNP, and o% with ~ = 0 
being a holomorphic point on the physical sheet. The explicit behavior of 
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K(z) and p(x) on the physical sheet in the neighborhood of x c and ZNP is 
given below in (4.3), (4.8), (4.9), and (4.11). This structure on the physical 
sheet appears to be the simplest structure possible consistent with the fact 
that there is a phase transition and general theorems concerning cluster 
expansions. (9) Furthermore, we remark that this analytic structure on the 
physical sheet is precisely that predicted by Gaunt (~~ on the basis of a 
Pad6 analysis of series expansions. 

The key observation for this analysis is that the physical quantities (or 
powers of these quantities in certain cases) are modular functions. The 
groups that arise are FI[N] for N =  5, 15, 30, and 45, where 

FI[N] = {A = Ia c bd) a, b, c, dintegers, 

ad-bc=l, (: bd)=-+(10 ~ ) m o d N }  (1.1) 

This is discussed in Section 2. The activity function ~(~) is closely related to 
the Klein icosahedron function ~(~) and plays a distinguished role in our 
analysis, as discussed in Section 3. In Section 4 the analytic structure of ~c 
and p in the complex activity plane is discussed. Many aspects of this paper 
are rather technical and have therefore been relegated to the Appendices. In 
Appendix A some well-known properties of the Dedekind functions are 
summarized for the convenience of the reader. Our main reference here is 
Schoeneberg. (1~) Some elementary properties of the groups FI[N] and 
tables of local uniformizing variables are given in Appendix B. Also in 
Appendix B one finds tables that give the local expansions of the physical 
quantities at various cusps. Complete tables are given for the disordered 
regime, and for the ordered regime enough information is given for an 
analysis on the physical sheet. To prove Theorem 2.1, the generators of the 
groups FI[N], N =  5, 15, 30, and 45, are needed. Lists of generators are 
given in Appendix C along with the method used to find these generators. 
We could not find these results in the literature. Further information can 
be extracted from these tables than what is given in Section 4. 

Finally, we mention that it follows from our results and general 
theorems from Riemann surface theory that in the disordered regime the 
equation of state can be given implicitly by 

P(~c, p) = 0 (1.2) 

where P(x, y) is a polynomial in two variables. We show that the valence 
of K is 22 and the valence of p is 8, from which it follows that there exists a 
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P of degree less than or equal to 8 in ~c and of degree less than or equal to 
22 in p. The explicit determination of P is not done here. In the ordered 
regime, there will exist, for example, polynomial relations of the form 

P(,,~, R~) = 0, P(~', p~)=o (1.3) 

(different P, of course), where R is the order parameter pl -/92 and p, is the 
sublattice density. ~1 3~ 

2. H A R D  H E X A G O N  M O D E L  

If ~ =  { z e C [ I m ( z ) > O }  denotes the upper half-plane, then 
Baxter (1-3) has shown that in the disordered regime 

q2(5~) r/~l,ol(5z; 5) q(3.o)(6r; 6) tl(e,o)(6z"; 6) (2.1) 
~c(r) - q2(6~) r/{z.0)(5z; 5) r/(1,o)(6~; 6) 

- (2.2) 
kr1(z,o~(Sz; 5)_] 

?/(Z') /~(6Z') [T/(1'0)(5"(; 5) /~(2,0)(30r; 5)] (2.3) 

where the physical values of r ~ ~ are Re r = 1/2, and in the ordered regime 

~c(~) -r/2(5v) t/~2'~ 5) r/(l,oi(3~; 3) (2.4) 
rt2(3r) '7~1,o~(5~; 5) 

= [ 5 ) ]  (2.s) 
Lq(l,O)(5z; 5)_] 

R(z)=pl-p2= rlz(3r ) (2.6) 

pz(r) = p3(r) = r/(r) r/(9v) r/2(3v ) [r/(2,o)(5z; 5) q(2,o)(45r; 5)]-1 (2.7) 

and the physical values of v 6 ~ in the ordered regime are Re r = 0. 
We have written Baxter's results in terms of the Dedekind eta function 

r/(r) and the generalized Dedekind function qg(r; N) (see Schoeneberg lu) 
and Appendix A), as this representation is convenient for the cusp analysis 
below. The function ~24(z) is a cusp form of weight 12 for the modular 
group, and the Dedekind functions r/g(v; N), g el (0, 0) rood N, raised to 
sufficiently high powers, are modular functions of level N. Our first result 



480 Tracy, Grove, and Newman 

shows that the physical quantities (2.1)-(2.7) (or powers thereof) are 
modular functions. 

T h e o r e m  2.1. In the disordered regime, z(~) is a modular function 
with respect to the group F115], and ~:(z) and p(z) are modular functions 
with respect to the group F1130]. In the ordered regime, ~(z) is a modular 
function with respect to the group F115], ~c3(~) and R3(r) are modular 
functions with respect to the group F1[15], and p~(r)= p3(z) are modular 
functions with respect to the group F1145]. 

Proof. First observe that if we let 

cz + d' ~ SL(2, E) 

then in the quantities (2.1)-(2.7) we encounter functions of the form f (nz) .  
In these we use the identity 

Thus, if n l c, 

at + b a(nz) + nb 

cz +d  (c/n)(nz)+d 

c/n E SL(2, Z) 

and this gives a new element in SL(2, ~). Now let f denote any of the 
quantities (2.1)-(2.7) and N the corresponding integer in F I [ N ]  in the 
statement of the theorem. Using the above observation, the representation 
of the various physical quantities in terms of rt(z) and r/g(r; N), and the 
transformation properties (A.3) and (A.4) (see Appendix A), we see that 

f / a z  + b5 
~ c ~ ) = e x p [ u i r ( A ) J . f ( z ) ,  r ( A) e Q  

for 

The period r(A) can be expressed (using the formulas in Appendix A) in 
terms of various Dedekind sums. This expression is quite complicated- 
looking, but it satisfies 

r(AB) = r(A) + r(B) + even integer 
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For any particular choice of A ~ F ~ [ N ] ,  r ( A )  can be evaluated by, say, 
computer algebra means. In Appendix C, lists of generators for the groups 
F ~ [ N ] ,  N =  5, 15, 30, 45, are given. The periods r ( A )  are evaluated for each 
generator, with the result that exp[Tcir(A)]  = 1 for every A for quantities 
(2.1)-(2.3), (2.5), and (2.7) and e x p [ g i r ( A ) ]  is a cube root of unity for 
quantities (2.4) and (2.6). Finally, f is holomorphic for ~ e~,gY and is 
meromorphic at the cusps. This follows from the corresponding properties 
of r/(" 0 and r/g(r; N). 

3. KLEIN 'S  I C O S A H E D R O N  F U N C T I O N  A N D  
T H E  A C T I V I T Y  F U N C T I O N  

The Klein icosahedron func t ion  Ilz13) 

~(T) -- F/(I'O)(5"C; 5) 

r/~2,01(5z; 5) 

= e2=,,/s Y'.2- -oo ( - 1 )= e s'~i'~ + 3~i=~ 

E . %  - ~  ( - 1 )  = e 5~'=2~+='=~ 
(3.1 

is a modular function on F [5 ] .  In fact, every modular function on F [ 5 ]  is 
a rational function of ~(r); in particular, the absolute modular invariant 
function J(r)  and r are related by the icosahedron equation (~2a31 

J( r )  = - . 3 ( ~ ) / 1 7 2 8 w ( ~ ) s  (3.2) 

where the polynomials u and w are 

u(x )  = x 2~ + 1 - 228(x 15 - x s) + 494x m 

w ( x )  = x ( x  ~~ + l l x  s - 1 ) 
(3.3) 

The icosahedron function ~'(~) is an analytic bijection from the com- 
pact Riemann surface J,~/F[5] onto C = C w  {oo}, and the modular 
invariant J is an analytic bijection fi'om o@/SL(2, 2 )  onto C2. lu~ Note that J 
is holomorphic for r e • and J ( i o o ) =  oo. 

Thus, we see that the activity is 

-x(r) = ~ - ~'5(r) disordered regime (3.4) 
[ ~-s(r )  ordered regime 
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and the modular invariant J in terms of the activity ,. is 

[ 4  + 1 + 228(~ 3 - z )  + 494~ca] 3 

J =  1728z(z 2 -  l l z  - 1) 2 (3.5) 

It follows from this last expression that J =  oo at z = 0, 0% ~., ~NP, where 

11 + 5 , J5  (x /5  + 1) 5 

~c 2 = - -  

~NP -- 2 = -- 

(3.6) 

It is also useful to discuss the activity function z(r) in terms of fun- 
damental domains. If o~1) denotes a fundamental domain for F~ [5], then 
a fundamental domain ~ for F [5 ]  can be chosen to be (~4) 

4 

~ 5 =  U ( ~  1))Ur (3.7) 
r=0 

[this follows from the coset decomposition (B.3)], where ( ~ ) ) ~  denotes 
the image of ~-~lJ under A ~ SL(2, Z) and U =  (~ [). Now ~ is univalent on 
4 ,  but, of course, ~s is not. Given z e S ,  there are five points r e  
( = ~  w cusps) such that ~5(~) = z. Since 

~(r+ 1) = c%~(~), co5 = exp(2rci/5) (3.8) 

these five points are related via r ~ r +  1 and are, in view of (3.7), 
equivalent points for F115]; hence, ~5 is univalent on f ~ / .  

Explicitly, . ~ ) m a y  be chosen to be (14) 

(3.9) 

where an inequivalent set of cusps is {ioe, 0, 2/5, 1/2}, Ni is the width of 
cusp i, W is the standard fundamental domain for SL(2, Z), and 

(see Appendix B). To connect with the previous discussion of x(T), observe 
that at these cusps (see Table III) ~ E {0, 0% ~c, zNp}- 
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4. K =  K(x) A N D  p = p ( x )  

For r e ~ ,  J ' ( r ) r  except at z = i ,  r = p  (=e2rCi/3), and the points 
SL(2, Z)-equivalent to i and p. Recalling that J(i)= 1 and J(p)=0, we 
have (picking a branch) that r(J)  is holomorphic in the cut J plane with 
branch points at 0, 1, co. Noting that tc and p are holomorphic in r, it 
follows from (3.5) that (again picking a branch) ~c = x(~) and p = p(~) are 
holomorphic in the cut z plane. The possible branch points are 0, oo, z, ,  
xN~,, and those z for which J =  1 and J =  0. Thus, this quick analysis tells 
us which points to focus on. We now present a more detailed analysis. 

4.1. D isordered  R e g i m e  

In the disordered phase, ~c(t) and p(r)  are modular functions on 
F1130 ]. The group F1130] is a subgroup of index 24 in F115 ] (see Appen- 
dix B); and so a fundamental domain for F1130 ] can be made from 24 fun- 
damental domains, appropriately patched together, of F115]. This means 
that when we choose x as the independent variable, n = ~c(z) and p = p(z) 
will be a 24-sheeted covering of the x plane. One of these sheets will be the 
physical sheet. 

We now show that the points arising from J = 0 ,  1 are not branch 
points. In the modular group, z = i, p are elliptic fixed points; but in the 
congruence subgroups FIN] these are not fixed points, (1~) and the local 
variables are simply (r - i) and (z - p), respectively. From this and the fact 
that ~(~) is univalent on ~ we conclude that at r '  [ =SL(2,  Z)-equivalent 
point of p or i] we have 

~ - ~ ' = ~ ( ~ - ~ ' ) +  . . . ,  ~ 0  

and so the series may be inverted to give v = r(x) holomorphic in some 
neighborhood of x'. Hence ~c=tc(~(x)) and p = p ( v ( z ) )  are also 
holomorphic. Thus, we have only to examine the points 0, 0% xc, XNP. 

Four  inequivalent cusps of F~[5]  can be chosen to be ioo, 0, 2/5, 1/2 
(see Appendix B). At each cusp we introduce a local uniformizing variable 
(Table I) and use the transformation properties of t/(t) and r/g(r;N) to 
write a local expansion for x. These local expansions are given in Table III. 
To analyze ~c--x(x) and p = p(;~) we first find a set of F~[30] inequivalent 
cusps and group them into subsets of / '~[5]-equivalent  cusps. This is done 
in Table II, Appendix B. There are 32 inequivalent cusps and hence 32 
local expressions for • = ~c(t) and for p = p(v) (see Table IV and V). Most 
of these represent tc and p on unphysical sheets. 

To determine the behavior in ~, we now eliminate the local uniformiz- 
ing variable x (Appendix B defines "x"!). To determine K on the physical 
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sheet, we must restrict r to lie in the fundamental domain W~13 as defined 
by (3.9) and not one of its images used to construct the fundamental 
domain ~-(~) of F 1 [30-]. This is the case since an elimination of the local 30 
variable x in the expansion at ioo of tc = ~c(z) and z = z(~) gives the con- 
vergent physical small-activity expansion of ~c = ~c(~). If one of the F I [ 5 ] -  
equivalent but Fl[30]- inequivalent  cusps to ioo is chosen, then the small- 
activity expansion of ~c on an unphysical sheet results. At z = 0 on the 
unphysieal sheets, ~c(~) has sixth-root, cube-root, and square-root 
singularities and one additional holomorphic point. 

The behavior of ~c = ~c(~) near z = ~,. on the physical sheet has already 
been discussed by Baxter. (>3) Defining 

t =  L1 - ~ 1 < 1  (4.1) 

one inverts the local expansion ~ = ~(~) at 1/2 in Table III  to obtain 

I x l = t ~ / 3 F ( t ) ,  x = l o c a l F ~ [ 3 0 ] - v a r i a b l e a t l / 2 ,  ~<~, .  (4.2) 

where F( t )  is a convergent power series in t, F ( 0 ) ~  0. Note (i) take x ~ x 3 
in Table l I I  to get a local F~[30] variable (see discussion in Appendix B) 
and (ii) x < 0 for t real. From Table IV it follows that the local expansion 
of ~c = ~(z) at the cusp 1/2 will be in powers of the variables x 3 and x 5. 
Thus, in terms of t, x will have the convergent Puiseux expansion 

K(-~) = E Kn,,"2 tnl+(5/3)'2' X---~'~c (4.3) 
n I, n2 >/0 

Explicitly, the first few terms are 

~c---= - - ~  I -  t + - - - - - ~  t " - t 2 
25,,/5 

+ (44, 

where 

~c,= 10 sin3(~/5) = ( 2 5 + 1 1 x / 5 )  (4.5) 

On the unphysical sheets the behavior of ~c(;~) near ;~, can be quite dif- 
ferent, as can be seen from Table IV. For  example, at the cusp 1/12, ~c(~) 
has a pole of order 5, the leading term in the Laurent expansion being 
given by 

sin2(2rt/5) ( ~ ) - 5  
K(;~) ~ i sin3(rc/5) 7 - -  1 (4.6) 
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On other sheets there are square-root and sixth-root branch points at 
z = ~ c .  We know of no statistical mechanical interpretation of these 
singularities on the unphysical sheets. 

The other singularity of ~c(~) in the finite ~ plane occurs ar ~ = ,~NP. A 
similar analysis as above shows that if s = I1 - ~/zNp I, then 

X = s1/6F(s), x = local F~ [30] variable at cusp 0 (4.7) 

where F(s) is a convergent power series in s, F(0) :~ 0 [not  the same F as in 
(4.2)]. From Table IV we conclude that at the unphysical singularity XNp 
on the physical sheet 

---,,-2- , ~ ~ x ; p  (4.8) 
t z l ,  tz2 ~ 0 

The coefficients K ~  can be computed explicitly from the tables if so 
desired. It is this singularity that determines the radius of convergence of 
the physical small-x cluster expansion. On the other sheets the behavior at 
zr~p can be either a square-root branch point, cube-root branch point, or a 
pole. 

The cusp 2/5 corresponds to z = oo on the physical sheet. Here ~r has a 
sixth-root branch point with a square-root and cube-root branch points on 
unphysical sheets. On two unphysical sheets x has a pole (look at cusps 
7/30 and 13/30). 

In Table V the local expansions for the density in the disordered 
regime are given. Proceeding as above, we see that, at x = ~c, P(z) has on 
the physical sheet a convergent expansion of the form 

Explicitly, 

P(~) = ~ P.,..2..3 t(213)"+'a+(5/'3>3 
hi ,  n2, n3 >10 

(4.9) 

lt2/3 1 1 ( + + )  ?/3 =5 1 

I (1 1 
-f6 ~ + - -  + ~  ~ - 125.,/-5 ~ c .  

(4.10) 

where p , . = ( 5 - ~ ) / 1 0 .  At ~=x~vp~b p has on the physical sheet the 
convergent expansion 

p ( ~ ) =  --PoS-'/3~p,,t, ,2,nS (1/3)''+>'2+(5/3)(z'~3+1), z ~ e  (4.11) 
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The valence of a modular  function is the number of ~ in a fundamental 
domain (including the cusps) that solve f ( z ) =  c for a fixed c ~ C w { oo }. 
Since the valence is independent of c, we can choose a convenient value, 
say c =  oo. From (2.1) we see that x(r) is holomorphic for r e ~  and is 
only co at the cusps. From Table IV we see that oo is assumed (counting 
multiplicity) 22 times. Similarly, the valence of p(r) is 8. 

4.2. Ordered  Regime 

As in the disordered regime, the only possible branch points occur 
at 0, K~., ~Ne, and oo. Noting that [ F l [ 5 ] : F l [ 1 5 ] ] = 8  and 
[ F ~ [ 5 ] : F ~ [ 4 5 ] ]  = 7 2  (see Appendix B), it follows that ~3(~) and R3(~) 
continue analytically to an eight-sheeted covering of the ~ plane and p2(x,) 
to a 72-sheeted covering. In the tables of Appendix B, we present a cusp 
analysis sufficient only to describe the behavior on the physical sheet. 

In the ordered regime, it is in the neighborhood of the cusp at 0 that 
gives the behavior on the physical sheet of quantities (2.4)-(2.7) near x,.. 
Introducing t as before [see (4.1)], one inverts local expansions to find 

~,,t,,2t , t ~ 0  (4.12) 
ni,n2>~O 

Explicitly, the first few terms are 

5) ~c = 1 + 1 -  t +  ( 6 - x / 5 ) t  2 

29 1 (4N/ /5- -1) t s /3-~-(~  0 1-~N~) [3j-O(110/3) +]-27 
with x ~ ~+. 

Similarly, 

(4.13) 

nl,n2~0 

and 

rnlr/2 
n|,n2)0 

for t ~ 0 on the physical sheet. The cusp 2/5 gives the ~ near zero proper- 
ties for the physical sheet. From Table VIII  we see that ~ has a cube-root 
singularity. 
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A P P E N D I X A .  D E D E K I N D  F U N C T I O N S  

For r e ~ the Dedekind eta function ~/(~) is defined by (u) 

~l(r)=e ~'/12 f i  ( 1 - e  2~i'~) (A.1) 
m = l  

For g = (g, h) e •N X •N we have the generalized Dedekind functions m~ 

r/g(z; N) = ot(g)e ~ip2(g/x)* [ I  ( i . . . .  ~ N ,o(2rci/N)~cm'l! 

m > 0  
m --= g(mod N) 

x l-] (1 - t o ;  h e 2~'~m/N) (A.2) 
m > O  

m ~ - -g(mod N) 

with 

a(g)= {(11-oNh)e~'p~WN) otherwiseifg=-0andhgs0m~ 

(J)U = exp(2~z(N) 

Pl(X) = x -  Ix]  - 1/2 

P2(x) = ( x -  Ix ] )  2 -  ( x -  I x ] ) +  1/6 

For A = (," ~) E SL(2, Z), t/(r) and r/g(r; N) transform as follows: 

(ar + b) 1/2 tl(r) 
(A.3) 

and f o r g ~  (0,0) (modN) ,  

at + b, 
r/g \ c ~ '  N)  = exp[~rg(A)] r/g,(r; N) (A.4) 

where g ' =  (g', h') = (g, h)A, 

~b(A) = 
a + d -  12sgn(c)S(d, ]c]) for c r  

C 

b 
for c=O 

(A.5) 
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rd[ap2(~)+~P2(N) -2sgn(c )S2(a , c ) l  for c # 0  

(A.6) 

and S(a, c) is the Dedekind sum 

V r o o d  c' 

and N Sg, h(a, c) is the generalized Dedekind sum 

( ( g + v N ~ ) f ( g ' + a v N ~  
S=~,~(",c) = Z \ \ - - 7 ~ 2 ) \ \  7R ) )  

v rood  c 

(A.7) 

(A.8) 

where ((x)) = x - [x]  - �89 + �89 with 6(x) = 1 if x e 7/ and 0 otherwise. 
In particular, for A e FIN] and g ~ (0, 0) (rood N), 

r/g(Az; N ) =  exp[Trg(A)] r/g(r; N) (A.9) 

Since ~zg(A)6Q, there exists an integer N1 such that (tlg(r;N)) N' is a 
modular function of level N, g ~ (0, 0). According to Schoeneberg, (11) the 
choice N1 = 12N/(6, N) works. The periods ng(A) satisfy (11) 

7rg(AB) = ug(A) + ~z,A~(B ) (a. 10) 

so that if A ~ F[N], we have 

ug(AB) = ug(A) + ug(B) (A. 11 ) 

A P P E N D I X  B. C O N G R U E N C E  S U B G R O U P S  A N D  
LOCAL E X P A N S I O N S  

We define the standard congruence subgroups 

and take F = F[  1 ]. 

~ mod (B.1) 

(B.2) 
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If U =  (o 1 11) , then we have the coset decomposition 

F , [ N ]  = F I N ]  ~ UF[ N] w ... ~ U N- x F[ N] 

Thus, [F I [N ] :  F [ N ] ]  = N. Using (11) 

' ( y )  [F: F[N]]=-~  N3 I~ 1 1 
piN 

we conclude that 

489 

(B.3) 

In particular, [F: F115]] = 12 and I-F: F~[30]]  = 288, so that 

I F  1 [ 5 ] :  ,F 1 [ 3 0 ]  ] = 24 (B.4) 

We write a cusp x / y e Q  as (i~.). The it is known (~1'15) that a set of 
inequivalent cusps of FIN]  is -+(i;), (x, y ) =  1, x, y E Z  N with - ( ~ )  
identified with (i~,)" In terms of these cusps the cusps of FI[N]  can be (15) 
identified with the orbits { +(x+b.v): b e ZN}. In particular, F~[5] has four 
inequivalent cusps, which can be chosen as {joe, 0, 2/5, 1/2}, and Fl[30 ] 
has 32 inequivalent cusps (see Table II). 

In the neighborhood of a cusp h/k, (h, k) = 1, we write 

= h/k + it/k, Re t > 0 (B.5) 

Then if h' solves the congruence 

hh' =- - l ( m o d  k) (B.6) 

Table I. Cusp Data for  1"115 ], mN=exp(2rri/N) 

Cusp Cusp width Local uniformizing variable 

~5 x = exp {_ ~c5 

ioo ! e(t) 
0 5 e(5t) 

2/5 1 co~e(5t) 

1/2 5 --e(10t) 
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Table II. Cusp Data for F,[30],  Wjv=exp(2wi]N) 

Cusp Cusp width Local uniformizing 
x3o variable x, e(t) = exp(-27~/t) 

ioo 1 e(t) 
11/30 1 co)9e(3Ot) 

4/5 6 co 5 e(3Ot) 
1/5 6 co4e(3Ot) 

1/10 3 ~O]oe(30t ) 
9/10 3 ~o7oe(30t) 

1/15 2 09~se(30t ) 
4/15 2 o3l~e(3Ot) 

2/5 6 co~e(3Ot) 
3/5 6 ~o~e(3Ot) 

3/10 3 oloe(3Ot) 
7/10 3 o9oe(30t ) 
2/15 2 co~e(3ot) 
7/15 2 ~olse(30t ) 
7/30 1 co~Te(3Ot) 
13/30 1 og~e(30t) 

0 30 e(3Ot) 
l/11 30 (D41 e(330t) 

1/4 15 ~o 4 e(6Ot) 
1/14 t5 ~o~3e(ZlOt) 
1/9 10 m89e(90t ) 
2/9 10 co~e(9Ot) 
1/6 5 ~o6e(30t ) 
5/6 5 co56e(30t) 

1/2 15 -e(3Ot) 
1/8 15 mse(120t ) 
1/7 30 co37e(210t) 
1/13 30 co~3e(390t ) 
1/3 10 co~e(3Ot) 
2/3 10 m~e(3Ot) 
1/12 5 o3~2e(60t ) 
5/12 5 e~e(6Ot) 
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the matrix 

is in SL(2, ~_) and 

with 

A = ( h  k -(hh' + l)/k) 
- h '  (B.7) 

At '  ='c (B.8) 

~' = h'/k + i/kt (B.9) 

The width of the cusp h/k of F 1[N] is defined to be the smallest integer K 
such that AU~A-Ie F1 [N].  A local uniformizing variable x of the cusp h/k 
is 

X = e 2~iz'/K (B.10) 

Observe that since h' is determined only mod k, x is determined up to a xth 
root of unity. This ambiguity is just a local change of coordinates and we 
will use this freedom to choose a local variable x that gives the "nicest" 
results. 

In Table I a set of inequivalent cusps, cusp widths, and local unifor- 
mizing variables for F115] are given. In Table II the same data are given 
for F1130]. In Table III the local expansions of ~s(r) at each of the 
inequivalent cusps of Table I are presented. Note that the "x"  is the local 
variable as defined in Table I . In Table IV the local expansions of ~c(r), 
disordered regime, at each of the inequivalent cusps of Table II are presen- 
ted. Again, note that the "x" is the local variable appearing in Table II. 

Table Ul. Local Expansion of ~S(T) a t  
Inequivalent Cusps of r~ [ 5 ]  ~ 

Cusp Local expansion of ~5(z) 

ioo x([5, 1]/[5, 2]) 5 

0 ~([1; ~o5]/[1; o~])5 

2/5 --x-I([5, 2]/[5, 1]) 5 

1/2 -- ~'2s([1; ~o2]/[ 1; a~5]) 5 

~'1 = ( x / ~ -  1)/2, r = (x /5+  1)/2, cos = exp(2ni/5). 

822/48/3-4-9 
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Table IV. Local Expansions of K(T), Disordered Regime, 
at Inequivalent Cusps of 1"1130 ] As Given in Table II a 

Cusp Local expansion 

11/30 

4/5 
1/5 

1/10 
9/lO 

1/15 
4/15 

3/5 
2/5 

7/10 
3/10 

7/15 
2/15 

7/30 
13/30 

0 
1/11 

1/14 
1/4 

1/9 
2/9 

5/6 
1/6 

1/2 
1/8 

1/13 
1/7 

2/3 
1/3 

1/12 
5/12 

_+[5]2[5, 11216, 3][6, 2]/[5, 2]3[6, 1][6] 2 

• 12ixfl3x 6 [30]2[30, 61211; -1 ] [1 ;  ~3]/[30, 121311; ~6][1]  2 

++_3ix/3x 3 [1512115, 3]2[2, 1][2; c~2]/[15 , 6]3[2, 1; c%][2] 2 

__.4x 2 [1012110, 232[3; -1 ] [3 ,  1]/[10, 4]3[3, 1; - -1] [3]  2 

• 1 2 ( i ~ )  [30]2[30, 121211; 1][I ;  0.~3]/[30, 6131t;(o6][1] 2 

+ 3(ix/3 ) [1512115, 6]2[2, 1][2; eJ3]/[15, 3]3[2, 1; o~3112] 2 

_+4 [1012110, 4]2[3; --1][3, 11/[10, 2]3[3, l; --1][3]  2 

+x  -1 [5]2[5, 2]2[6, 3][6, 2]/[5, 11316, 1][6] 2 

_+ (6-,/3/5)ct [6]2[6; (05]2[5; --1 ] [5; 03]/[6; o9~]315; 0,)6] [5] 2 

+ (3x/3/10)c I [3]2[3; ~512[10, 5][10; 093]/[3; o,)5213110, 5; ~J93] [ 10] 2 

+_ (2icl/5) [2]2[2; ~%]2[-15; -1] [15 ,  5]/[2; o~]3[15, 5; - 1 ] [15 ]  2 

+(i/lO)el x -5  [11211; ~512130, 15][30, 10]/[1; co213130, 5][30] 2 

+ (3x/3/10)c 2 [3]2[3; o9212110, 5][10; ~o3]/[3; o~513110, 5; c~3][10] 2 

+ (6~,~/5) c2 [6]2[6; o952]2[5; -1 ] [5 ;  ~3]/[6; cos]315; (o6][5] 2 

++_(2ic2/5) [2]2[2; ~2][15; --1][15,5]/[2; o~513[15, 5; 11115] 2 

+_(i/lO)c2 x 5[112[1;~]2130,15][30,10]/[1;~513130,5][-30] ~ 

a The lower sign refers to the second cusp. The local variable "x" is defined by Table II, c I = 
sina(n/5)/sin3(2n/5), c2 = sinZ(2n/5)/sin3(~/5), m~v = exp(2ni/N). 
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In general, if x' is the local variable for h/k+ it/k in F115] and x" is 
the local variable about the same cusp but now viewed in Fl[30] ,  then, 
using (B.9) and (B.10), we have 

x ' =  (x") ~3~ (B.11) 

where 

' (B.12) /s ~ K 5 K 3 0  

Thus, in words, if one has the local expansion of a Fl[5]-invariant 
function at h/k+it/k, the corresponding local expansion in F1130] is 
obtained by replacing x' in the F~[5] expansion by (x") ~'3~ Finally, we 
have, of course, that the local expansion of a Ft[5]-invariant function at 
equivalent cusps is just the same expansion with the interpretation that the 
"x" is the corresponding local variable. 

Table V. Local Expansions of p(T}, Disordered Regime, 
at the Inequivalent Cusps of r1130] as Given in Table II a 

Cusp Local expansion 

ioo, 11/30 
3/5, 2/5 

1/5, 4/5 
7/30, 13/30 

1/10, 9/10 
1/15, 4/15 

O, 1/11 
1/12, 5/12 

1/2, 1/8 
1/3, 2/3 

1/4, 1/14 
1/9, 2/9 

1/7, 1/13 
1/6, 5/6 

3/10, 7/10 
2/15, 7/15 

- x  {6,3}/{2, 1}[5, 1][30, 12] 

{6, 3}/{2, 1}[30, 6][5, 2] 

{2, 1}/{6, 3}[10, 23115, 3] 

- p o  x - '  {30, 15}/{10, 5}[6; cos]J1; ~ 

p,. {10, 5}/{30, 15} [3; 092][2; o)23 

PNv {10, 5}/{30, 15}[3; m5312; cos] 

pox -1 {30, 15}/{10, 5}[6; cos2][1; cos] 

x {2, 1}/{6, 3}[10,4][15, 6] 

a The local variable "x" is defined by Table II, Pc = (5 -x/'5)/10, PNP = (5 + x/'5)/10, and P0 = 
[4 sin(g/5) sin(2rc/5) ] -t. 
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Table VI. Local Variables for a Partial Set of Inequivalent Cusps of F1115] a 

Cusp Cusp width Local Uniformizing variable x, 
~15 e(t) = e x p ( - 2 n / t )  

ioo 1 e(t) 
0 15 e(15t) 

2/5 3 ~o~e(15t) 

1/2 15 e(3Ot) 

a The cusps chosen are those needed for an analysis on the physical sheet. 

To simplify the tables, we use the following notation in Tables III-V 
and VIII-X: 

[ j ]  = Iml[ 
m = l  

{j,k}--- [ I  
m = 1  

[ j ,  k ]  = 
m = l  

[ j ;  a ]  = I~I 
m ~ l  

[ j ,  k; a ]  = 1 ]  
m ~ l  

(1 - x  jm) 

(1 - -X Jm-~) 

(1 - # m - k ) ( 1  --X j~ + ~-  j) 

(1 - -  axJm)(1 -- a - i S  m) 

(1 - -  ax  jm-  k)(1 - -  a - i x  jm + k - j )  

Table VII. Local Variables for a Partial Set of Inequivalent Cusps of F1[45] ~ 

Cusp Cusp width Local uniformizing variable x, 
K45 e(t) = exp( -- 27r/t) 

ioe 1 e(t) 
0 45 e(45t) 

2/5 9 e)~e(45t) 

1/2 45 -e (90 t )  

The cusps chosen are those needed for an analysis on the physical sheet, 
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Table VIII. Local Expansions of K(T), Ordered Regime, 
at the Cusps Given in Table VI a 

Cusp Local expansion 

ioo 

0 

2/5 

1/2 

x ~/3 [5]2[5,2]2[3, 1]/[31215,113 

(3x/3/lO)cz [31213;m~]215;m3]/[3;ms]315] 2 

( 3 . , ~ ) e - ' i / 6 x  3 [15]z[15,312[1; ~3]/[15,613[1] 2 

(3 . , f3 / lO)cte  -~/3 [31213;o51215;~3]/[3, o~]315] 2 

aThe local variable "x" is given in Table VI, cl=sin2(n/5)/sin~(2~/5), c2= 
sin2(2~/5)/sin3(~/5), and ~N=exp (2~ i /N ) .  

Table IX. Local Expansion of R =  P l -  P2, Ordered Regime, 
at the Cusps Given in Table VI ~ 

Cusp Local expansion 

ioo [1][51/[3] 2 

0 (31, fS)x  ~/3 [15] [31 / [5 ]  2 
2/5 0) 15 X2'/3 [3][151/[1] 2 

1/2 e-'~i/3x 1/3 [3][15]/[5]  2 

"The local variable "x" is given in Table VI. 

Table X. Local Expansions of pz (T )=  p3(T), Ordered Regime, 
at the Cusps Given in Table VIII a 

Cusp 

iov 

0 

2/5 

1/2 

Local expansion 

x z [1][9]/[31215, 2][45, 18] 

p,. [45][5]/[151219; e)2] [1; oJ 2] 

[45][1]/[312145, 9][5, 1] 

PNP [45][5]/[15]~[9; ~5][1; C~S] 

a The local variable "x" is given in Table VIII, p,.= ( 5 -  ~//5)/10, p•p = 
(5 + ,fig)/10. 
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A P P E N D I X C .  G E N E R A T O R S  FOR C O N G R U E N C E  
S U B G R O U P S  

The group F =  SL(2, 7/) is generated by the two matrices 

0 0 1 

(these are the negatives of the matrices so named in Ref. 11). Let Y-- be a set 
of elements of F consisting of one element from each (right) coset of F:[N] 
(that is, a right transversal for F~[N] in F). For each matrix M in P 
denote by M the element of Y- in the coset F:  IN]  M. A generating set for 
F~[N] is {VT(VT) -l, VR(-V-R)-I: V ~ Y }  (see Robinson, (16) Section 6.1). 
This set contains at most 2IF: F I [ N ] ]  elements and, if J is a Schreier 
transversal, at most 1 + IF: F I [ N ] ]  nonidentity elements. We used a 
simple-minded algorithm for constructing a generating set f# for F:[N]. 
The algorithm builds f# and a Schreier transversal 3- concurrently. Initially 
f# contains just (-~ o )  and Y- contains just (o: o). The algorithm consists of 
IF: F I [ N ] ]  steps, each of which processes an element of 3- as follows: 

1. Take an unprocessed element V of ~--. 

2. Put X =  VT. 
3. If F I [ N ]  X has no representative in Y-, then add X to Y and go 

to step 5; else put Y= X(J() 1. 

4. If Y, y - l ,  _ y, or - Y-~ belongs to f#, then go to step 5; else add 
Yto  f#. 

5. Put X =  VR. 
6. If F:[N]X has no representative in ~--, then add X to Y- and go 

to step 8; else put Y = X(.~)-~. 

7. If Y, y - l ,  _ y, or - Y t belong to f#, then go to step 8; else add 
Yto  f#. 

8. Go to the next step or stop after [F: Fl[N-1] steps. 

The algorithm was implemented in the system CAYLEY 
Cannon (~7)) and run on VAXs at the University of Arizona. 

The results are as follows: 
F 115] is generated by four elements 

(see 

I) 4) 
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VIII.7 of Newman(18)). So we have minimal generating sets for / '~[5]  and 
/"1 [ 15 ]. Using programs for calculating presentations of subgroups of finite 
index in finitely presented groups and for transforming finite presentation 
(see Havas et a/.(19)), it is possible to find relations among the generators in 
the generating sets for/"1130] and/"1145]. These relations can be used to 
get minimal generating sets. 

Since/"~[15] is a subgroup of index 8 in /" t [5] ,  another approach is 
to start from a generating set for /"~[5] and proceed similarly. The 
resulting generating set is less pleasing, since larger entries arise in the 
matrices. 

NOTE ADDED IN PROOF 

After this paper was submitted, the algorithm in Appendix C was 
implemented using PASCAL. Copies are available by writing to L. Grove. 

The polynomial (1.2) has been computed in "Equation of State and 
Isothermal Compressibility for the Hard Hexagon Model in the Disordered 
Regime" by M. P. Richey and C. A. Tracy, submitted to J. Phys. A: Math. 
GeFL 

The exponent 5/6 appearing in Eq. (4.8) has also been computed by 
A. Baram and M. Luban, "Universality of the Cluster Integrals of 
Repulsive Systems," to appear in Physical Review A. 
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